THE RING GENERATED BY THE ELEMENTS OF DEGREE 2 IN H(Un(Fp),Z)

نویسنده

  • ADRIAN BARBU
چکیده

We compute all the relations in cohomology satisfied by the elements of degree two of H∗(Un(Fp), Z) where p ≥ n and Un(Fp) is the group of of upper triangular matrices of GLn(Fp) with 1 on the main diagonal. e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formal Modular Seminvariants

We construct a generating set for the ring of invariants for the four and five dimensional indecomposable modular representations of a cyclic group of prime order. We then observe that for the four dimensional representation the ring of invariants is generated in degrees less than or equal to 2p − 3, and for the five dimensional representation the ring of invariants is generated in degrees less...

متن کامل

The mod 2 homology of the general linear goup of a 2-adic local field

Let F be a finite extension of Q2, of degree d. Our first main theorem gives an explicit computation of the mod two homology Hopf algebra of the infinite general linear group GLF . The answer is formulated in terms of the well-known homology algebras of the infinite unitary group U, its classifying space BU, and the classifying space BO of the infinite orthogonal group. Let P denote the subalge...

متن کامل

Non Cohen-Macaulay Vector Invariants and a Noether Bound for a Gorenstein Ring of Invariants

This paper contains two essentially independent results in the invariant theory of finite groups. First we prove that, for any faithful representation of a non-trivial p-group over a field of characteristic p, the ring of vector invariants of m copies of that representation is not Cohen-Macaulay for m ≥ 3. In the second section of the paper we use Poincaré series methods to produce upper bounds...

متن کامل

On lattice of basic z-ideals

  For an f-ring  with bounded inversion property, we show that   , the set of all basic z-ideals of , partially ordered by inclusion is a bounded distributive lattice. Also, whenever  is a semiprimitive ring, , the set of all basic -ideals of , partially ordered by inclusion is a bounded distributive lattice. Next, for an f-ring  with bounded inversion property, we prove that  is a complemented...

متن کامل

Simple proof of Chebotarëv’s theorem

We give a simple proof of Chebotarëv’s theorem: Let p be a prime and ω a primitive pth root of unity. Then all minors of the matrix ( ω ij )p−1 i,j=0 are non-zero. Let p be a prime and ω a primitive pth root of unity. We write Fp for the field with p elements. In 1926, Chebotarëv proved the following theorem (see [3]): Theorem. For any sets I, J ⊆ Fp with equal cardinality, the matrix (ω )i∈I,j...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003